REVIEW
Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system

Jianguang Ni1,2 and Jerry L. Chen1
1Department of Biology, Boston University, Boston, MA 02215, USA
2Center for Systems Neuroscience, Boston University, Boston, MA, USA

Keywords: cortical circuitry, mouse behavior, sensorimotor integration, whisker/barrel cortex

Abstract
In the mammalian neocortex, the capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function, enabling processes such as higher-level sensory processing and sensorimotor integration. Despite the importance attributed to long-range connections between cortical areas, their exact operations and role in cortical function remain an open question. In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. In this review, we examine recent studies dissecting long-range circuits involved in whisker sensorimotor processing as an entry point for understanding the rules that govern long-range cortical circuit function.

Introduction
The mammalian neocortex is parcellated into specialized cortical areas dedicated to specific functions. A single area does not operate in isolation but functions in a concerted manner with other cortical areas, integrating information from one set of areas, transforming it, and passing it along to other areas. The capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function (Buzsaki, 2010; Kopell et al., 2014; Fries, 2015), enabling processes such as higher-level sensory processing and sensorimotor integration. The dynamic nature of long-range communication is also believed to be a key process that enables cognitive flexibility. Diminished cognitive flexibility measured as decreased performance in attention and working memory tasks have been associated with a range of neurological disorders including autism spectrum disorder, schizophrenia, and Alzheimer’s disease as well as during aging (Friston & Frith, 1995; Festa et al., 2005; Wen et al., 2011). Disruptions in long-range connectivity between cortical areas such as a reduction in functional connectivity and disordered white matter distributions have also been observed under these conditions (Meyer-Lindenberg et al., 2005; Sigurdsson et al., 2010; Schipul et al., 2011; Uhlhaas & Singer, 2012), suggesting a link between these two pathological hallmarks. Despite the importance attributed to these long-range connections, their exact role in cortical function and the rules that govern their operations remain an open question. It is hypothesized that activity in lower sensory areas carries information about the environment in a ‘feedback’ manner to update higher areas driving decisions or actions, while activity in higher areas representing internal predictions can select for relevant stimulus information in lower areas through feedback connections (Cauler, 1995; Hupe et al., 1998; Gilbert & Sigman, 2007; Larkum, 2013; Zhang et al., 2014; Makino & Komiyama, 2015). To understand these circuits, it is necessary to disentangle how neuronal subpopulations, defined by both their functional properties and their specific connections, contribute to long-range communication under behaviorally relevant conditions.

In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. Mice use their whiskers to sense objects and navigate through the environment (Diamond et al., 2008). The ability to train animals to sophisticated sensorimotor tasks and to exhaustively monitor sensory and motor variables has made the mouse whisker system an attractive model to study corticocortical connections under behaviorally relevant conditions. Integrative approaches combining molecular, genetic, anatomical, and functional techniques have been applied to investigate interactions between the major sensorimotor cortical areas: primary somatosensory cortex (S1), secondary somatosensory cortex (S2), and primary motor cortex (M1). This has enabled detailed dissections for how long-range circuits are involved in whisker sensorimotor processing. Here, we review recent studies as an entry point for understanding principles that govern long-range cortical circuit function. We will focus on how these circuits operate under the context of goal-directed behaviors involving stimulus detection, object localization, and texture discrimination.
Local and long-range connections across whisker sensorimotor cortex

S1 has long been an appealing model for investigating cortical function due to its sophisticated somatotopic sensory map. Each vibrissa is represented by cytoarchitectonically defined layer 4 (L4) neurons that forms ‘barrels’ (Woolsey & Van der Loos, 1970). Physical deflections of the vibrissa are transduced by mechanoreceptors in the whisker follicle and ascend to somatosensory and motor cortices via the trigemino-thalamo-cortical pathway (Fig. 1). Two rodent thalamic nuclei, the dorsal-medial part of the ventral posteromedial nucleus (VPMdm) and posterior medial nucleus (POm), are early sensory gateways that transmit tactile information received from trigeminal nuclei of the brain stem to the cortex (Ahissar et al., 2000; Yu et al., 2006; Wimmer et al., 2010). In S1, VPM

Fig. 1. Local and long-range connectivity in mouse sensorimotor cortex. M1/M2, primary/secondary motor cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; VPMvl, ventrolateral domain of ventral posterior medial nucleus (VPM); VPMdm, dorsal-medial part of VPM; POm, posterior medial nucleus. Projections to septa and dysgranular zones of S1 are not shown. Line thickness indicates connectivity strength. Green line, feedforward projections. Pink line, feedback projects. The 3D mouse brain volume model is adapted from Allen Institute for Brain Science.
predominantly innervate L4 and also weakly innervate LSB/L6A with mainly single-whisker input (‘lemniscal pathway’; Killackey, 1973; Bureau et al., 2006; Constantinople & Bruno, 2013), whereas the POm sends axons to all S1 layers but preferentially targeting L5A and L1 with multiple-whisker input (‘paralemnisical pathway’; Killackey, 1973; Koralek et al., 1988; Deschenes et al., 1998; Bureau et al., 2006). In addition, some multiwhisker inputs are conveyed by the ventral lateral VPM (VPMvl) to S1 (‘extra-lemniscal pathway’; Pierret et al., 2000).

The laminar organization in S1 has been implicated in segregation and integration of sensory information (Lube & Feldmeier, 2007). L2/3 receives major ascending input from intra-columnar L4 and L5A and trans-columnar L4 input from nearby barrel columns (Schubert et al., 2007; Feldmeyer et al., 2013). Connectivity from L4 to L3 is similarly as prominent as those from L2/3 to L5 (Hoeks et al., 2011). Connectivity between L2/3 excitatory pyramidal neurons is sparse and weak (Holmgren et al., 2003; Schubert et al., 2007; Lefort et al., 2009; Petersen & Crochet, 2013), whereas connectivity between excitatory-inhibitory neurons and inhibitory-inhibitory neurons are relatively strong. L5A neurons receive major input from other intra-columnar and trans-columnar L5A neurons (Schubert et al., 2006), which is complemented by contributions from L4 and supragranular layers. L5B neurons receive the strongest trans-columnar input from the nearby barrel column. Both VPM and POm receive feedback from corticothalamic projection neurons in layer 6 and strong disynaptic inhibition from the reticular nucleus and zona incerta (Lin et al., 1990).

S2, located postero-lateral to S1, bears a less defined somatotopic organization (Carvell & Simons, 1986, 1987). POm targets L4 of S2 (Viana et al., 2011; Pouchelon et al., 2014), whereas VPMvl innervates L4 and L6 (Pierret et al., 2000). The layers of S2 share similar cytoarchitectonic features with S1. In S2, the excitatory descending pathway from L2/3 to L5 is more prominent than connections from L4 to L3 (Hoeks et al., 2011). Infragranular S2 neurons target several subcortical and thalamus regions, forming collateral long-range corticostriatal and corticothalamic pathways (Levesque et al., 1996).

The primary vibrissal motor cortex (M1), which is located in the postroeminal part of agranular frontal motor cortex, possesses almost no granular L4 but an expanded LSB and L6 (Brecht et al., 2004a; Hooks et al., 2011; Castro-Alamancos, 2013). Sensorimotor information is directly related to M1 via the sensory thalamic nucleus from POm, which innervates L2/3 and L5A, and via the motor thalamic (VA/VL, thalamic nuclei), which targets L2/3 through LSB but avoids L6 (Hooks et al., 2013). M1 also possesses three classes of long-range projection neurons: intra-telencephalic-type neurons which are cortex and striatum projecting; L5 pyramidal-tract-type neurons which are largely brain stem and spinal cord projecting; and L6 which are largely thalamus projecting. M1 disinhibits POm by innervating the zona incerta (Urbain & Deschenes, 2007).

S1, S2, and M1 exhibit prominent reciprocal connectivity (Miyashita et al., 1994; Mao et al., 2011; Suter & Shepherd, 2015). In S1, corticocortical neurons that project to M1 or S2 are largely non-overlapping subpopulations (Sato & Svoboda, 2010; Chen et al., 2013; Yamashita et al., 2013). Feedforward S1 neurons that project to M1 (S1M1) originate from L2/3 and L5A of S1 and preferentially innervate L2/3 and L5A of M1. In turn, M1 targets S1 (M1S1) in L2/3 and L5A (Mao et al., 2011; Hooks et al., 2013). A subpopulation of L6 regular spiking excitatory neurons in S1 also receive very strong M1 input (Kinnischtzke et al., 2014). In addition to direct excitatory connections, M1S1 neurons innervating L2/3 also target vasoactive intestinal peptide-positive (VIP+) inhibitory neurons in S1 which preferentially target somatostatin-positive (SOM+) inhibitory neurons that contact dendrites of L2/3 pyramidal neurons (Lee et al., 2013). Feedforward and feedback connections between S2 and M1 largely originate from both supragranular and infragranular layers (Welker et al., 1988; Aronoff et al., 2010). Reciprocal connections between S2 and M1 have also been reported (Miyashita et al., 1994; Suter & Shepherd, 2015). Corticospinal axons from both M1 and S2 partly converge on middle layers of the cervical spinal cord (Suter et al., 2013; Suter & Shepherd, 2015).

Functional properties of M1, S1, and S2 during behavior

Rodents are capable of collecting spatial and texture- and shape-related information from nearby objects using their whiskers. Several behavioral tasks have been developed to experimentally investigate how such sensory information is processed and utilized for goal-directed behavior (Fig. 2). One basic behavior is a tactile detection task in which mice are trained to report the deflection of a single whisker (Sachidanandam et al., 2013). For spatial information, mice have been trained to various tasks including bilateral-edge distance (Shuler et al., 2001; Krupa et al., 2004), gap width (Hutson & Masterton, 1986; Jenkinson & Glickstein, 2000), object localization (Knutsen et al., 2006), and virtual wall tracking behaviors (Sofroniew et al., 2014). During object localization, mice are able to report absolute azimuthal position of an object based on vibrissae with a precision of six azimuthal degrees (Mehta et al., 2007; O’Connor et al., 2010a). Texture discrimination tasks have been used to investigate how mice resolve object-related information based on fine-level kinematic features generated from whisker-object contact (Arabzadeh et al., 2003, 2004; Moore, 2004; von Heimendahl et al., 2007; Wolfe et al., 2008). Rodents are able to discriminate different textures within three whisker sweeps across the textured surface (von Heimendahl et al., 2007; Chen et al., 2013).

M1

Mice adjust their whisker motor strategies according to task conditions. During tactile detection, whisking prior to and during stimulation reduces task performance, suggesting that mice might refrain from whisking in order to increase stimulus detection (Kyriakatos et al., 2017). In fact, facial nerve transection suggests that detection of passive deflection does not require whisker movement (Sachidanandam et al., 2013). In contrast, mice display prominent rhythmic whisking during texture discrimination (Chen et al., 2013, 2015) and concerted whisker sweeps during object localization (O’Connor et al., 2010a,b; Petreanu et al., 2012). Concurrent whisker sweeps during object localization serve to sample the proximal spatial environment. In contrast, rhythmic whisking during texture discrimination drives whisker kinematics that differs across textures such as the frequency of high-velocity, high-acceleration stick-slip events and curvature changes (Jadhav & Feldman, 2010; Chen et al., 2013, 2015).

M1 is involved in the planning and execution of these whisker movements. M1 activity is modulated by whisker movements in both rats and mice (Ebbesen et al., 2017). During whisking in air, M1 neurons are modulated by slow variations in the envelope of whisking, such as amplitude and mid-point values (Hill et al., 2011; Friedman et al., 2012), which is independent of proprioceptive sensory feedback. Larger proportions of L2/3 neurons exhibit fast modulations related to whisking phase than L5 neurons, while more L5 cells show modulation correlated to the whisking mid-point (Sreenivasan et al., 2016).
Fig. 2. Whisker-based behavioral paradigms. (A) Go/No Go task. Mice report the presentation of ‘Go’ stimulus by licking for reward (‘Hit’) and hold for ‘No Go’ stimulus (‘CR’). Incorrect ‘Go’ and ‘No Go’ trials are denoted as ‘miss’ and ‘false alarm’, respectively. (B) Two Alternative Forced Choice (2AFC) task. The mice report by licking the left or right water port for ‘stimulus A’ or ‘stimulus B’, respectively. A delay period can be introduced between sensory sampling period and response cue. (C) Representative whisker-based tasks. In a passive tactile detection task, mice are trained to detect and report the deflection of a single whisker. In a texture discrimination task, mice report differences in the coarseness of textures. In an object localization task, mice are trained to discriminate the location of presented poles presented along the anterior–posterior axis of the animal.
Intracortical microstimulation (ICMS) of M1 evokes contralateral rhythmic whisker retraction in a pattern similar to whisking in air (Berg & Kleinfeld, 2003; Brecht et al., 2004). Areas that drive whisker retraction are larger and more central compared to areas driving protraction (Haiss & Schwarz, 2005). Unilateral optogenetic inactivation of M1 leads to a significant decrease in whisking initiation (Sreenivasan et al., 2016). In a separate study, ICMS elicited whisker retraction, whereas inactivation resulted in contralateral protraction and increased whisker movements (Ebbesen et al., 2017).

These seemingly contradictory findings suggest that distinct and dedicated circuits maybe devoted to the initiation and suppression of whisker movements.

S1

Several inactivation experiments have demonstrated that S1 is necessary for behaviors involving tactile detection, object localization, and texture discrimination (O’Connor et al., 2010a; Miyashita & Feldman, 2013; Sachidhanandam et al., 2013; Guo et al., 2014). During tactile detection, evoked responses in L2/3 pyramidal neurons were found to consist of two components: an early sensory response encoded in the form of a reversal potential and a later secondary depolarization that reflected the animal’s choice. For L2/3 inhibitory neurons, whisker stimulus drove parvalbumin-positive (PV+) and VIP+ neurons, whereas SOM+ neurons fired at low rates. PV+ neurons also exhibited choice-related activity in the period between the early sensory response and when the animal reported their choice, suggesting that this cell type contributes to gating sensorimotor transformation after initial sensory processing (Sachidhanandam et al., 2016). Calcium activity in the apical dendrites of L5 pyramidal neurons has also been identified to contribute to the sensory detection threshold during this task (Takahashi et al., 2016).

During behaviors involving active touch, membrane potentials of L2/3 neurons show rapid, highly correlated large-amplitude responses (Crochet & Petersen, 2006; Ferezou et al., 2007). During whisker movement, both S1 firing rate and subthreshold membrane potentials are better modulated by fast vibrisa phase cycles (Fee et al., 1997; Crochet & Petersen, 2006), which is likely due to sensory reafference. Touch-evoked S1 responses are also modulated according to the whisking phase cycle (Curtis & Kleinfeld, 2009).

During object localization, differences in activity reflecting object location are already strongly observed in L4 (O’Connor et al., 2010a). This selectivity in L4 excitatory neurons is facilitated by the suppression of whisker movement information from L4 PV+ inhibitory neurons (Yu et al., 2016). While L5 also exhibits high levels of activity and discriminability, L2/3 excitatory neurons are the least active and show touch-related, whisking-related, and mixed responses (Chen et al., 2013; Peron et al., 2015). L2/3 neurons also showed strong direction tuning during object touch along the rostral–caudal axis of the animal (Peron et al., 2015). Despite this general survey of layer-specific representations across S1 during object localization, the specific computations occurring within and across layers during the task remain unclear.

During texture discrimination, texture information has been found to be encoded by both firing rate and spike timing in S1, where rougher textures typically drive higher firing rates than smoother textures in matched trial conditions (von Heimendahl et al., 2007; Zuo et al., 2015). Texture-related time-locked spike patterns are attributed to high-velocity and high-acceleration whisker slip-stick events, which occur more frequently in rough textures (Wolfe et al., 2008; Jadhav et al., 2009). Curvature changes related to whisker ‘sticks’ drive higher firing rates and are also stronger in rough textures (Chen et al., 2015).

S2

Across species, S2 mediates tactile sensation and many cognitive functions including learning, memory, multimodal processing, and decision-making (Sacco & Sacchetti, 2010; Romo & de Lafuente, 2013). In the rodent whisker system, the function of S2 has been less investigated. Tactile responses in S2 differ from S1. S2 exhibits more multiwhisker receptive field responses than S1 (Kleinfeld & Delaney, 1996). In anesthetized rats, S2 neuron responses are rapidly adapting and more selective for the angle of whisker deflection (Kwegyir-Afful & Keller, 2004). S2 neurons are more sensitive to differences in lower frequency whisker stimulation and are less time locked to such stimuli as compared to S1 (Melzer et al., 2006). The extent to which these features are driven by POM vs. S1 is unclear. However, latency of responses in S2 to contralateral whisker stimulation is similar to that of S1, suggesting that POM is a major driver of sensory responses in S2 (Kwegyir-Afful & Keller, 2004; Megevand et al., 2008). S2 also possesses strong interhemispheric callosal connections and bilateral responses suggesting that it may be involved in integration of bilateral sensory information (Debowska et al., 2011). During texture discrimination, S2 can similarly encode texture information as S1 from firing rate and spiking timing codes (Zuo et al., 2015). However, S2 exhibits more diverse, non-sensory responses than S1. More neurons in S2 were observed to respond to whisking and showed stronger choice-related responses compared neurons in S1 (Chen et al., 2016; Kwon et al., 2016).

Functional interactions across S1 and M1

Studies investigating the nature of interactions between S1 and M1 suggest several potential functions (Fig. 3). Whole-cell recordings of S1M1 neurons show that passive tactile stimulation evoke fast, large postsynaptic potentials (PSPs) as well as phasic action potential firing, whereas repetitive active touch evoked strongly depressing PSPs and transient firing (Yamashita et al., 2013). S1M1 neurons reliably encode fine-level kinematic features such as whisker angle, curvature changes, and stick-slip events across animal training (Chen et al., 2015). This suggests that S1M1 neurons are well suited for stimulus detection as well as for reporting instantaneous stimulus information. Additionally, input from S1 to M1 can initiate whisker movement. S1 can directly drive whisker retraction (Matyas et al., 2010). Optogenetic inhibition of S1 excitatory neurons causes hyperpolarization of membrane potential and reduced firing rate in M1, as well as reduced probability of whisking movement. In contrast, optogenetic activation of S1 rapidly depolarized M1 neurons and drove contralateral whisker retractions (Sreenivasan et al., 2016). This suggests that feedback pathways from S1 to M1 might be critical for initiating motor plans upon stimulus detection and potentially in response to specific stimulus features.

During object localization, calcium activity of M1S1 neuron axons contains mixed information about whisker movement kinetics, object position, and touch. This information can provide S1 with both motor and sensory contexts during behavior (Petreanu et al., 2012). The influence of these feedback signals onto local excitatory and inhibitory S1 neurons has been investigated. Direct projections from superficial M1 to output cells of subgranular S1 are thought to mediate whisker retraction (Matyas et al., 2010).
Monosynaptic connections of M1 axons onto S1 L5 pyramidal neurons have also revealed a circuit computation for object localization that involves active input processing through pyramidal-neuron dendrites. Large-amplitude calcium signals along the apical tuft dendrites were observed when active touch occurred at particular object locations or whisker angles that require both vibrissal sensory input and primary motor cortex activity (Xu et al., 2012). Thus, M1 feedback input to S1 facilitates whisker-based object localization and potentially other functions requiring sensorimotor integration.

While direct monosynaptic excitatory connections between S1 and M1 are involved in specific sensorimotor computations, indirect connections through local inhibitory interneurons may provide additional functions that depend on brain state (Castro-Alamancos, 2004; Ferezou et al., 2006; Hentschke et al., 2006; Poulet & Petersen, 2008; Fu et al., 2014; Wester & McBain, 2014). Different mechanisms that influence brain state-related responses in S1 have been proposed such as thalamic control (Steriade et al., 1993; Poulet et al., 2012), neuromodulatory effect (Constantinople & Bruno, 2011; Lee & Dan, 2012; Marder, 2012; Wester & McBain, 2014), and corticocortical feedback (Gilbert & Sigman, 2007; Zhang et al., 2014). Compared to quiet wakefulness, low-frequency, high-amplitude responses were suppressed while high-frequency, low-amplitude responses were enhanced during the active state. Optogenetic activation of M1S1 neuron axons exerts rapid and target-specific changes in S1 network state, leading to reduced low-frequency (1–5 Hz) local field potential (LFP) power and enhanced gamma band (30–50 Hz) LFP power. This change in network state results in more reliable sensory responses in S1 (Zagha et al., 2013). This cortical feedback modulation of S1 responses occurs independently of thalamus, suggesting a direct long-range corticocortical effect in controlling brain state.

These state-dependent influences of M1 and S1 could occur through M1S1 connections onto SOM+ and VIP+ interneurons. While fast-spiking GABAergic neurons dominate the non-whisking quiet wakefulness state, non-fast-spiking GABAergic neurons dominate the active whisking period (Gentet et al., 2010). Whole-cell recording of SOM+ neurons showed hyperpolarized and reduced firing rate in response to both passive touch and active whisking (Gentet et al., 2012). During whisking, M1S1 neurons strongly recruit VIP+ neurons, which inhibit SOM+ neurons and disinhibit L2/3 excitatory pyramidal neurons in S1 (Lee et al., 2013). Genetic ablation of cholinergic muscarinic M1 or M3 receptors in SOM+ neurons almost completely suppressed their activity across all layers, suggesting an important cholinergic source of excitatory drive to these whisking-activated subtypes (Muñoz et al., 2017). Thus, the influence of M1 onto S1 through inhibitory neurons and the neuromodulation of these cell types...
might enable the dynamic regulation of long-range interactions related to sensorimotor integration according to different behavioral demands. In summary, interactions between S1 and M1 appear to function to extract positional information, initiate whisker movement, and adjust motor plans to better encode sensory information and carry out behavior.

Functional interactions across S1 and S2

In contrast, interactions between S1 and S2 appear to underlie a different set of functions (Fig. 4). Under non-task conditions, S1S2 neurons contrast with S1M1 neurons in exhibiting sustained firing in response to passive whisker deflection and non-adapting responses to multiple active touches (Yamashita et al., 2013). This suggests that S1S2 neurons might have the ability to integrate sensory information over time as needed to extract complex, high-order features of an object’s identity. In line with this, S1S2 neurons are more prominently activated during texture discrimination and more accurately encode the identity of different textures. S1S2 neurons show stronger choice-related activity compared to other S1 neurons (Chen et al., 2013). This choice-related activity is a learned feature that is specific to S1S2 neurons as S1M1 neurons faithfully represented basic sensory features throughout task learning (Chen et al., 2015). During tactile detection, task learning also produced a licking-dependent depolarization in S1S2 neurons that correlated with the animal’s choice (Yamashita & Petersen, 2016). Thus, S1S2 neurons have a unique capacity to acquire choice- or context-related responses during behavioral learning.

Choice-related responses in S1S2 neurons appear to be inherited from S2 (Chen et al., 2016; Kwon et al., 2016; Yang et al., 2016). Imaging S2 feedback axons in S1 showed that touch and choice-related activity propagate in a loop such that S2 cortical feedback reinforces feedforward input from S1 (Kwon et al., 2016). While S1 and S2 can be driven by both sensory- and motor-related variables, the exchange of sensory and choice information between S1 and S2 appears to be both highly coordinated and specific to corticocortical interactions between these two areas (Chen et al., 2016). To summarize, interactions between S1 and S2 are involved in generating choice-related context to sensory information that arises in an experience-dependent manner.

Conclusion and future directions

In conclusion, we have outlined several critical functions that long-range cortical networks across the mouse sensorimotor system play in behavior. Interactions between S1 and M1 as well as between S1 and S2 carry out multiple functions in order to cover a range of sensorimotor processing needs and behavioral demands. On one level, these two reciprocal pathways share striking homology to the ‘where’ and ‘what’ pathways described in the visual system (Goodale & Milner, 1992). Connections between S1 and M1 bear resemblance to the ‘dorsal’ visual stream involved in object localization while connections between S1 and S2 bear resemblance to the ‘ventral’ visual stream involved in the object recognition (Yamashita et al., 2013). While this could be an overgeneralization, it establishes a phenomenological framework for which deeper investigations can be pursued in the future to dissect specific circuits and mechanisms that drive these long-range operations.

One area of future research is the extent to which neuronal oscillations play in coordinating and regulating information flow across cortical areas. Studies in the primate visual and somatosensory system have implicated the synchronization of activity across cortical areas through oscillations as means to facilitate information transfer between areas (Brovelli et al., 2004; Fries, 2005; Haegens et al., 2011; Ni et al., 2016). Spiking activity in barrel cortex is strongly locked to beta and gamma band LFP (Vinck et al., 2015). Inter-areal LFP coherence between S1 and remote areas such as perirhinal cortex, hippocampus CA1, and visual cortex peaked between theta-beta band, consistent with idea of low-frequency band neural oscillation serves as top-down communication channel (Wang, 2010; van Kerkoerle et al., 2014; Bastos et al., 2015). It remains to be seen how these oscillations may be involved in facilitating the interactions across M1, S1, and S2 during behavioral tasks.

The role that subcortical input from thalamic and neuromodulatory regions play in coordinating these long-range interactions also warrants further investigation. Similar to the pulvinar’s role in coordinating inter-areal information in the visual system (Saalmann et al., 2012), higher order thalamic nuclei such as POM could play a role in coordinating inter-areal information in the whisker system (Chen et al., 2016). Given the clear state-dependent effects that the cholinergic system has over S1 activity, it is also worth

Fig. 4. Functional interaction across S1 and S2. The neuronal activity in S1 and S2 are temporally coordinated during texture discrimination task. During goal-directed behavior, choice and context information originates from S2 and propagates in a S1-S2 loop. Learning reinforces pathway-specific feedforward input from S1 to S2 encoding touch-related information.

© 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 1–10
considering how M1 and S2 are affected by such input and how that affects information flow between these areas. Considering these and other mechanisms will provide a broader perspective for inter-area function during behavior and may reveal general principles for relationships between local and long-range circuit function across the brain.

Acknowledgements

We thank Cameron Condylis, Eric Lowet, and David J. Margolis for comments on the manuscript. This work was supported by a Boston University Center for Systems Neuroscience Postdoctoral Fellowship, a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (24/827), the Richard and Susan Smith Family Foundation (Newton, MA), and Whitehall Foundation.

Conflict of interest

The authors declare no competing financial interests with respect to authorship or the publication of this article.

Author contributions

J. Ni and J.L. Chen prepared and wrote the manuscript.

References


© 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd European Journal of Neuroscience, 1–10

Mouse sensorimotor whisker system
