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Abstract The coordination of activity across neocortical areas is essential for mammalian brain

function. Understanding this process requires simultaneous functional measurements across the

cortex. In order to dissociate direct cortico-cortical interactions from other sources of neuronal

correlations, it is furthermore desirable to target cross-areal recordings to neuronal subpopulations

that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-

area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1)

and secondary (S2) somatosensory whisker cortex during texture discrimination behavior,

specifically identifying feedforward and feedback neurons. We find that coordination of S1-S2

activity increases during motor behaviors such as goal-directed whisking and licking. This effect was

not specific to identified feedforward and feedback neurons. However, these mutually projecting

neurons especially participated in inter-areal coordination when motor behavior was paired with

whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our

results demonstrate specific functional coordination of anatomically-identified projection neurons

across sensory cortices.

DOI: 10.7554/eLife.14679.001

Introduction
Sensory perception, fine voluntary motor control, and higher cognitive functions depend on neural

dynamics in the mammalian neocortex, which itself relies on the exchange of information between

cortical areas through both bottom-up (feedforward) and top-down (feedback) neuronal pathways

across the cortical hierarchy (Bressler and Menon, 2010; Buschman and Miller, 2007). Cortico-cor-

tical connections are formed between columnar microcircuits via long-range axons of pyramidal neu-

rons in superficial layer 2/3 (L2/3) and deeper layer 5. A given cortical area typically establishes

connectivity patterns not only with one particular area but with multiple target areas in a distributed

and often reciprocal fashion (Markov et al., 2013; Oh et al., 2014; Zingg et al., 2014). Thus, in

order to fully understand the cortical interactions underlying behavior, it is necessary to disentangle

how neuronal subpopulations defined by both their functional properties and their specific anatomi-

cal projections contribute to local computation and long-range communication.

Such an understanding has been limited by the difficulty in measuring population activity across

areas with sufficient spatial and temporal resolution. Present methods to study large-scale cortical

dynamics either lack cellular resolution and sensitivity to low numbers of action potentials (e.g.,

human fMRI; Hutchison et al., 2013; or wide-field functional imaging in mice, Ferezou et al., 2007;

Lim et al., 2013; Minderer et al., 2012) or they are restricted to poorly defined neuronal subsets as

for extracellular recordings (Melzer et al., 2006). The main limitation for these recording approaches

is the reliance on correlated activity patterns to infer information flow without the additional ability
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to attribute such activity to anatomically-defined neuronal subsets. Consequently, it has not been

possible to definitively determine whether the underlying measured inter-areal dynamics could

reflect: i) direct cortico-cortical interactions; ii) indirect cortico-thalamocortical pathways; iii) or syn-

aptic drive from common input areas. To dissect these possibilities new technologies are needed to

monitor inter-areal dynamics with cellular resolution while at the same time identifying subsets of

neurons that project across areas. Two-photon microscopy is well suited to monitor action potential

firing across neuronal populations, mainly using calcium imaging, as well as to optically identify

molecularly or anatomically-defined cell types (Chen et al., 2013a). So far, standard two-photon

microscopes have been limited to imaging long-range activity within one cortical area (Chen et al.,

2013b; Glickfeld et al., 2013; Jarosiewicz et al., 2012; Petreanu et al., 2012; Sato and Svoboda,

2010). New systems have recently been developed that enable simultaneous imaging of neuronal

populations across cortical areas across increasingly larger fields of view (Lecoq et al., 2014;

Stirman et al., 2014; Tsai et al., 2015).

Here, we present a novel ’multi-area’ two-photon microscope for simultaneous measurements

across primary and higher sensory areas of mouse neocortex. We have combined this system with

anatomical labeling strategies to identify feedforward and feedback projection neurons between

reciprocally connected cortical areas to image their functional interactions. In order to investigate

the role of direct cortico-cortical interactions among other potential sources of correlated activity,

we have applied this approach in the whisker primary (S1) and secondary (S2) somatosensory corti-

ces, two areas that are anatomically coupled through reciprocal connections, cortico-thalamocortical

pathways, and other common inputs (Deschenes et al., 1998; Suter and Shepherd, 2015;

Theyel et al., 2010). Expanding our recent work on the activity of divergent projection pathways

originating in S1 during a texture discrimination task (Chen et al., 2013b; 2015), we sought here to

examine how population activity in S1 and S2 evolves over time during such tactile whisker-based

behavior. Whisking behavior spans a range of time scales, from individual whisk cycles of about 100-

eLife digest Behavior and cognition – the process of thought – emerge from computations that

occur within vast networks of neurons in the brain. Within these networks, neurons may

communicate with their neighbours in the same brain region as well as with distant counterparts in

remote brain regions. Neuroscientists have studied these networks by measuring the activity of

neurons within a single region or across the brain as a whole. However, it has not been possible to

study long-distance communication between pairs of neurons in different brain regions. This has

made it difficult to work out exactly what information brain regions exchange.

Chen, Voigt et al. now overcome these challenges by developing a new microscope system that

allows researchers to measure the activity of individual neurons in different brain regions at the same

time. The system works alongside tracing techniques that map the connections between distant

neurons.

To demonstrate the new tools, Chen, Voigt et al. measured the activity of neurons in two areas of

the mouse brain that monitor the whiskers. Mice brush their whiskers against an object to obtain

information on its size, shape, texture and location. Two brain regions, called the primary and

secondary areas of the whisker cortex, process this information and exchange messages back and

forth. However, it was unclear what information these messages contain.

Chen, Voigt et al. therefore trained mice to discriminate between coarse and fine sandpapers

using their whiskers, and analysed the activity of the neurons that directly connect the two areas of

the whisker cortex. The results revealed that although movement and sensory stimulation activated

both the primary and secondary areas of the whisker cortex, the direct connections between these

regions mainly exchange sensory information.

This approach makes it possible to observe brain networks in an unprecedented level of detail. In

the future, this technology will be extended to provide a more comprehensive view of how neurons

communicate across brain areas. This will increase our understanding of how multiple areas of the

brain all work together to produce the activity patterns that give rise to behavior.

DOI: 10.7554/eLife.14679.002
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ms duration, to bouts of whisking over a second, and to prolonged whisking, for example during

locomotion (Kleinfeld and Deschenes, 2011). Our multi-area imaging approach enabled us to ana-

lyze the slower aspects of whisking envelope changes and whisker-touch contacts whereas analysis

of neuronal dynamics on the rapid time scale of tens of milliseconds was precluded by our limited

temporal resolution. Our main goal was, however, to take advantage of the ability to simultaneously

image in S1 and S2 and to investigate how the subsets of reciprocally projecting neurons contribute

to the coordination of activity across these areas and to the coding of sensory and behavior

information.

Results

Multi-area two-photon microscope
We built a two-photon microscope capable of simultaneous scanning of two sub-areas within a rela-

tively large field of view (FOV), enabling one to freely and independently position the sub-areas in

order to select appropriate imaging spots. To achieve this goal we coupled two laser beams through

a galvanometric scanner system into a low-magnification, high-NA objective (Figure 1A–D and

Materials and methods). Specifically, we chose a 16x water-immersion Nikon objective (NA 0.8) as

core element, which supports imaging in a FOV of 1.8-mm maximum side length with cellular resolu-

tion (Figure 1E, Figure 1—figure supplement 1 and Video 1). We split laser light from a Ti:sap-

phire laser (80 MHz pulse repetition rate) into two excitation beams using a 50:50 beam splitter and

delayed the laser pulse train of one beam by 6.25 ns, half of the inter-pulse interval, to interlace the

two pulse trains so that the two sub-areas receive alternating laser excitation pulses. For disambigu-

ating the fluorescence signal generated by the two laser foci, we adopted a rapid de-multiplexing

approach (Cheng et al., 2011). For typical 2–4 ns fluorescence lifetimes of fluorescent proteins

(Akerboom et al., 2013), the 6.25-ns time windows are sufficiently long to capture mainly fluores-

cence photons generated by the last excitation pulse. Some crosstalk between areas may remain

but can be corrected for post hoc using spatial linear unmixing (Materials and methods and Fig-

ure 1—figure supplement 2) (Cheng et al., 2011).

Each beam enters a movable coupling unit, named ’focal plane unit’ (FPU), which enables inde-

pendent positioning and focusing of its respective imaging area below the objective (Figure 1A–C).

Independent positioning is achieved by coupling the FPU output beams to the scanner unit via small

fold mirrors that sit at the end of cantilever arms. Lateral x/y-movement of each FPU introduces an

offset of the respective beam from the optical axis of the first scan lens, which converts this offset

into a pivoting angle of the beam around the scan mirrors. In the remaining optical path, this pivot-

ing angle is translated into lateral movement of the corresponding imaging sub-area below the

objective. Independent focusing is achieved with electrically tunable lenses (ETLs) in the FPUs

(Grewe et al., 2011). Each ETL is combined with an offset lens to allow tuning the beam from diver-

gent to convergent. These divergence changes translate into axial shifts of the intermediate foci at

the FPU output and in between scan and tube lens, corresponding to down- and upward shifts of

the excitation focus along the optical z-axis below the objective. In combination with a 6-mm pair of

scan mirrors, ETL focusing provides a z-range of up to 600 mm.

Imaging anatomically-identified projection neurons across S1 and S2
Mice can actively sense the environment by moving their whiskers to gather information regarding

the location, shape, size, and texture of an object (Diamond et al., 2008). Processing of tactile infor-

mation at the cortical level is thought to occur through interactions between S1, S2, as well as pri-

mary motor cortex (M1) (Aronoff et al., 2010; Bosman et al., 2011). In order to investigate direct

interactions between S1 and S2, we sought to apply the multi-area two-photon microscope to simul-

taneously monitor activity in feedforward neurons in S1 projecting to S2 (S1S2) and feedback neurons

in S2 projecting to S1 (S2S1) in wild-type adult mice during tactile whisker behavior. To distinctly

label these projection neurons in a mutually exclusive manner across the reciprocally connected

areas we employed a viral strategy making use of orthogonal recombinase systems. To label S2S1
neurons, we delivered a retrogradely-infecting AAV6 expressing Cre recombinase (AAV6-pgk-Cre)

into S1 along with S2-injection of an AAV1 expressing Cre-dependent nuclear tdTomato (AAV1-

EF1a-dio-NLStdTomato; Figure 2A). S1S2 neurons were labeled by delivering an AAV6 expressing
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Flpe (AAV6-syn-Flpe) into S2 along with S1-injec-

tion of an AAV1 expressing Flpe-dependent

nuclear LSSmKate2 (AAV1-EF1a-fio-

H2BLSSmKate2). In addition to these viruses, we

broadly expressed the genetically encoded cal-

cium indicator YC-Nano140 in S1 and S2 using

AAV1-EF1a-YCNano140 (Chen et al., 2013b;

Horikawa et al., 2010). For targeting viral injec-

tions as well as for selecting regions for later

two-photon imaging, we employed optical

intrinsic signal imaging to identify areas within

S1 and S2 corresponding to the same principal

whisker (Figure 2B and Materials and methods).

Following cranial window implantation,

LSSmKate2-positive S1S2 neurons and tdTo-

mato-positive S2S1 neurons in L2/3 were identi-

fied in vivo (Figure 2C). YC-Nano140 expressing

neurons that did not express LSSmKate2 or

Figure 1. Multi-area two-photon microscope for flexible simultaneous imaging of sub-areas within a large field-of-view. (A) Schematic of multi-area two-

photon microscope. Light from a Ti:sapphire laser is split into two beams and one beam sent to a delay line. Each beam then enters a focal plane unit

(FPU), which allows axial focusing with an electrically tunable lens (ETL). Both beams are scanned in parallel by a pair of galvo mirrors. (B) Schematic of

FPU. (C) Imaging modes include scanning of a single large FOV (with one beam switched off) and parallel scanning of two sub-areas. (D) Principle of

spatiotemporal multiplexing: The detected fluorescence photons can be attributed to the correct area of origin by rapid demultiplexing synchronized

to the laser pulse train. (E) Example two-photon image (1.7 mm FOV) at 160–180 mm depth in a YCX2.60-expressing transgenic mouse in L2/3.

DOI: 10.7554/eLife.14679.003

The following figure supplements are available for figure 1:

Figure supplement 1. Variation of the point-spread function over field-of-view position and ETL tuning range.

DOI: 10.7554/eLife.14679.004

Figure supplement 2. Crosstalk between both sub-areas observed in vivo.

DOI: 10.7554/eLife.14679.005

Video 1. In vivo z-stack of YC-Nano140 expressing

neurons. Single area images from the multi-area two-

photon microscope of L2/3 neurons were taken from

70-210 mm below the pial surface at 1 mm z-step

resolution. Sub-area excitation beam was delivered

through the ETL, positioned either on-axis (left) or 900

mm off-axis (right), and focusing was achieved through

translation of the objective by the z-stage.

DOI: 10.7554/eLife.14679.006
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tdTomato were classified as S1ND and S2ND neurons, respectively (target area ’not determined’),

possibly comprising unlabeled S1S2 and S2S1 neurons as well as projection neurons targeting differ-

ent brain regions. Animals were habituated to head-fixation and trained to perform a whisker-based

go/no-go texture discrimination task (Figure 2D,E) (Chen et al., 2013b; 2015). On ‘go’ trials,

Figure 2. Simultaneous calcium imaging of identified feedforward and feedback neurons in S1 and S2 of mouse neocortex during behavior. (A) Viral

injection scheme for simultaneous labeling of feedforward and feedback neurons and YC-Nano140 expression. (B) Functional mapping of S1 and S2

through optical intrinsic signal imaging. Intrinsic signals evoked by stimulation of the C2 whisker (top left) and the B2 whisker (top right). In addition to

localized intrinsic signals in S1 barrel columns, additional activation spots are visible in S2. Identified barrel columns (circles) are overlaid over blood

vessel (bottom left) and YC-Nano140 expression (bottom right) images. (C) In vivo 2-photon images of LSSmKate2-positive S1S2 neurons (blue),

tdTomato-positive S2S1 neurons (red) with non-co-labeled YC-Nano140-expressing neurons (grey) in S1 (S1ND) and S2 (S2ND). (D) Behavior setup for

texture discrimination task. (E) Trial structure for go/no-go texture discrimination task. (F) Example calcium transients for individual neurons in [C]

measured episodically during texture discrimination task along with periods of whisker-to-texture touch (orange area), whisking amplitude (brown

trace), and reaction time on Hit trials (green area). For each trial the selected plane in each sub-area is indicated on top, illustrating the combinatorial

plane hopping.

DOI: 10.7554/eLife.14679.007

The following source data and figure supplement are available for figure 2:

Source data 1. Optimized low tensor rank across animals.

DOI: 10.7554/eLife.14679.008

Figure supplement 1. Denoising with tensor decomposition.

DOI: 10.7554/eLife.14679.009
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animals were rewarded with a water droplet if they correctly licked (‘Hit’) when presented with a tar-

get texture (a panel of coarse sandpaper, P100). On ‘no-go’ trials, mice were supposed to withhold

licking (‘correct rejection’ or ‘CR’) when presented with one of two non-rewarded, ‘non-target’ tex-

tures of smoother grades (P280, P1200). Misses on go trials were not rewarded and false alarms

(‘FA’) on no-go trials were punished with an air puff and a time-out period. Whisker movements

were monitored with high-speed videography (500 Hz) and licking behavior was measured with a

piezo film attached to the water spout. Whisking and licking recordings were downsampled to

match the frame rate of imaging (7 Hz), allowing analysis of how neuronal activity relates to slow

amplitude changes of whisking envelope and to the occurrence of whisker-texture touches (Materials

and methods).

Since simultaneous imaging in two cortical regions presents unique opportunities to examine the

coordination of activity across areas, we sought to increase the number of pairwise imaged S1 and

S2 neuronal populations. To this end we used the ETLs to implement a ‘combinatorial plane hop-

ping’ mode, in which two sub-areas are scanned simultaneously but each imaging plane is indepen-

dently refocused in a combinatorial manner during the inter-trial interval (Figure 2C,F and Video 2).

Using this approach, we imaged in 7 mice ~150 neurons per sub-area (distributed over three imag-

ing planes at different cortical depths) across ~1800 trials over 5–6 experimental sessions. Combina-

torial hopping between three imaging planes in each area resulted in simultaneous imaging of 9

combinations of planes per animal, for which ~200 trials were acquired per pair of planes, still suffi-

cient for our analysis. In total, 228 S1S2, 817 S1ND, 193 S2S1, and 750 S2ND neurons were imaged in

63 pairs of focal planes across S1 and S2. For comparison with non-task conditions, we additionally

imaged the same neuronal populations as measured during texture discrimination behavior for

another ~1800 trials over 5–6 sessions, during which mice were passively presented with the same

textures. In order to improve statistical analysis of single-trial responses for trial conditions with low

trial numbers, calcium traces were denoised using tensor decomposition (Figure 2—figure supple-

ment 1 and Figure 2—source data 1, Materials and methods).

Behavior-related responses of S1 and S2 neurons
While sensory- and behavior-related responses of S1S2, S1M1, and S1ND neurons have been charac-

terized during texture discrimination (Chen et al., 2013b; 2015), responses of S2S1 and S2ND neu-

rons have not. We first assessed for each cell class how calcium signals relate to behavioral aspects

using a general linear model (GLM) against vectors for whisker-touch onset, whisking envelope

amplitude, and licking onset (Figure 3A,B and Figure 3—figure supplement 1) (Miri et al., 2011;

Pinto and Dan, 2015). S1ND and S2S1 neurons showed better overall GLM fits to these behavioral

parameters compared to their neuronal counterparts in their respective areas (Figure 3C and Fig-

ure 3—figure supplement 1; S1ND vs. S1S2,p<0.002; S2ND vs. S2S1,p<0.005, KS-test). Further analy-

sis of fits to specific regressors revealed that S2S1 and S1ND neurons showed higher GLM

coefficients for whisker-touch onset than their within-area counterparts (Figure 3D; S1ND vs.

S1S2, p<0.05; S2ND vs. S2S1, p<0.005, one-way ANOVA with repeated measures). While no specific

differences were observed for cell classes in S1,

S2S1 neurons showed higher GLM coefficients

than S2ND neurons for whisking and licking onset

(p<0.001, one-way ANOVA with repeated meas-

ures). These results suggest that S2S1 neurons

exhibit higher whisking- and licking-related activ-

ity compared to other neurons in S2.

We next analyzed single-neuron responses to

different sensory conditions or different behavior

conditions by performing single-cell receiver

operating characteristic (ROC) analysis against

different trial conditions (Green and Swets,

1966). Single-cell ROC analysis of Hit vs. CR tri-

als revealed that a larger fraction of S2S1 neu-

rons compared to other neuronal classes (72%)

was able to discriminate these two conditions

above chance (Figure 3E; p<0.002, �
2 test).

Video 2. Simultaneous calcium imaging across S1 and

S2. Single trial video of calcium responses during

texture discrimination acquired at 7 Hz with the multi-

area two-photon microscope (1x playback speed). YFP

(green) and CFP (blue) fluorescence from YC-Nano140

are shown and overlaid with calculated DR/R (red).

DOI: 10.7554/eLife.14679.010
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Differences between Hit vs. CR trials could reflect encoding of sensory information, decision, or deci-

sion-related actions such as licking. To disambiguate these possibilities, we also performed ROC

analysis of FA vs. CR trials, which were previously shown to consist of similar whisking and sensory

conditions (Chen et al., 2015). Again, a larger fraction of S2S1 neurons (50%) was able to discrimi-

nate these two conditions above chance (p<0.05, �2 test), suggesting that this greater discrimination

power of S2S1 neurons represents decision- or action-related information. As an additional control,

we assessed sensory-related responses by ROC analysis of P280 vs. P1200 textures on CR trials and

found that S2S1 neurons were not more likely to discriminate these trial types compared to other cell

types (Figure 3E). Overall, we find that S2S1 were more likely to encode for non-sensory aspects of

task-related behavior compared to other neurons in S2 and S1.

Motor-related coordination of S1 and S2
In order for task-related information exchange to occur between areas, activity across areas must be

’coordinated’ during relevant behavioral conditions and such coordination should be specific to neu-

rons that anatomically project between areas. To investigate how activity is coordinated across S1

and S2, we first sought a measure of population activity for each area that would capture the diverse

response properties of individual neurons and allow us to determine if their dynamics evolve similarly

Figure 3. Feedback neurons in S2 exhibit behavior-related responses. (A) General linear model (GLM) of behavior-related responses. Example of GLM

fit for one neuron of calcium responses against touch, licking, and whisking as behavior events. Single-trial calcium responses are plotted along with

model fit as well as touch periods with onset indicated, individual licks with onset indicated, whisking envelope amplitude, and decision. (B) GLM

coefficients (B) for example neuron shown in [A] for regressors for touch onset, whisking envelope amplitude, and licking onset across different delays.

Delays are aligned to the onset of each behavioral event. (C) Cumulative probability distribution (cpd) of overall GLM fit across cell types. (D) GLM

coefficients for different cell types for regressors for touch onset (left), whisking envelope amplitude (middle), and licking onset (right) across different

delays. Grey line indicates average GLM coefficient for neurons with non-significant coefficients at that time point. (E) Fraction of active neurons able to

discriminate Hit vs. CR, FA vs. CR, and P280 vs. P1200 trials above chance determined by single-cell ROC analysis. (shaded area: s.e.m. error bars: s.d.

from bootstrap test; n = 44 S1S2, 161 S1ND, 59 S2S1, 198 S2ND neurons).

DOI: 10.7554/eLife.14679.011

The following figure supplement is available for figure 3:

Figure supplement 1. General linear model of whisking- and licking-related calcium responses.

DOI: 10.7554/eLife.14679.012
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across time. To this end, we characterized population activity in S1 and S2, respectively, by using lin-

ear discriminant analysis (LDA) (Fisher, 1936; Safaai et al., 2013). For n neurons in an imaging area,

LDA finds for each time point an axis in n-dimensional space so that the distributions of population

responses for two chosen trial conditions – projected onto this axis – are best separated (Materials

and methods). Similar to the ROC analysis, we selected not only Hit vs. CR but also various other

pairs of trial conditions that would allow us to disambiguate sensory- and behavior-related dynamics

(Table 1). The dimensionality reduction resulting from this approach effectively extracts time-depen-

dent ‘linear discriminant’ variables LD(t) as one-dimensional representations of neuronal population

activity with respect to the chosen trial conditions. For illustration purposes, we exemplify this LDA

procedure for measurements from only two neurons in Figure 4A,B, whereas typically populations

of active neurons within an imaging area were used for analysis.

In the initial analysis of population responses, we did not distinguish between neuronal cell types

in each area and thus included both S1S2 and S1ND neurons for S1 and S2S1 and S2ND neurons for

S2. We performed LDA at each time point for 1-s periods prior to and following either whisker-touch

onset or licking onset, generating mean LD time courses for S1 or S2 by averaging LDA results from

all imaging areas in these respective regions. For LDA performed on Hit vs. CR trials, we observed

that mean population responses for both S1 and S2 diverged following whisker-touch onset

(Figure 4C). ROC analysis using the LD variable as measure of population activity in S1 and S2,

respectively, revealed that discrimination power for both areas increased immediately following

whisker-touch onset and through the first second of touch (Figure 4D).

S1 and S2 receive common input from several areas including M1, which controls licking and

whisking (Brecht et al., 2004; Huber et al., 2012; Suter and Shepherd, 2015), the posteromedial

thalamic nucleus (POm), which relays re-afferent whisking (Deschenes et al., 1998; Moore et al.,

2015; Yu et al., 2006), and the ventral lateral region of the ventral posterior medial thalamic nucleus

(VPMvl), which relays whisker touch (Pierret et al., 2000). Correlations of activity between S1 and S2

could thus reflect these aspects of behavior. To measure how S1 and S2 activities are coordinated

across time, we calculated the trial-by-trial correlation of LDS1 and LDS2, the LD time courses

obtained for active neurons in simultaneously imaged populations in S1 and S2, respectively

(Figure 5A). We termed this cross-areal correlation LDCCS1:S2, which during task performance

increased immediately following whisker-touch onset for both Hit and CR trials. 500 ms after touch

onset, however, LDCCS1:S2 remained elevated for Hit trials relative to CR trials (Figure 5B, p<0.05,

one-way ANOVA with repeated measures). The time point of this divergence corresponded to the

average delay of licking onset from whisker-touch onset (mean reaction time: 524 ± 5 ms for Hit tri-

als; Figure 5C) (Chen et al., 2013b; 2015). To examine whether LDCCS1:S2 changes indeed relate to

the reaction time, LDCCS1:S2 on Hit trials were re-aligned to licking onset (Figure 5D). LDCCS1:S2

increased and peaked at licking onset and remained elevated thereafter, further suggesting that

coordination of activity across S1 and S2 could be associated with such behavior.

To dissociate whether and how cross-areal coordination related to sensory versus motor parame-

ters, we first controlled for sensory input by measuring LDCCS1:S2 for population responses pro-

jected along the FA vs. CR axis, where the same non-target textures were presented (Figure 5E and

Figure 5—figure supplement 1A,B). We found LDCCS1:S2 was higher for FA compared to CR trials

Table 1. Axes used for linear discriminant analysis. Summary of trial conditions compared and used for linear discriminant analysis. For

each axes, noted are potential differences in texture, licking, and whisking parameters between trial conditions as well as the utility in

comparing such trial conditions for isolating sensory or behavior responses.

Axes for LDA Texture Licking Whisking Utility in analysis

Hit vs. CR Different Different (Hit) Same Cannot isolate sensory, decision, or action-related responses

FA vs. CR Same Different (FA) Same Isolate decision and action-related responses

Pre- vs. post-touch licking (FA trials) Same Different Same Isolate licking-related responses

High vs. Low Whisking (CR trials) Same None Different Isolate whisking-related responses

P280 vs. P1200
(CR trials)

Different None Same Isolate sensory-related responses

Target vs. Non-target (Non-task) Different None None Isolate sensory-related responses

DOI: 10.7554/eLife.14679.013
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Figure 4. Illustration of extracting population response time courses by linear discriminant analysis. (A) While LDA

is performed on multiple simultaneously imaged neurons, for demonstration purposes, here calcium transients of

two simultaneously imaged neurons within an imaging plane are plotted and sorted according to Hit and CR trials.

Dotted line indicates whisker-touch onset. (B) Example linear discriminant analysis performed on the two neurons

in [A]. Bottom panel shows scatter plot of trial-by-trial responses for each neuron at the indicated time point (red

region in [A]) rotated along the LD axis for Hit vs. CR trials. Top panel shows distribution of trials for population

activity projected along the LD axis along with mean LD response. (C) Average S1 or S2 population responses

after LDA in Hit and CR trials across the first second prior to and following whisker-touch onset. (D), ROC analysis

of S1 or S2 population responses shown in [C] for Hit vs. CR trials under task conditions demonstrating the

performance of the LDA. Dotted line indicates touch onset. (shaded area: s.e.m.; n = 21 S1 planes, 21 S2 planes).

DOI: 10.7554/eLife.14679.014
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both prior to and following whisker-touch onset, (p<0.05, one-way ANOVA with repeated meas-

ures). We asked if this increased LDCCS1:S2 on FA trials could partially be explained by licking behav-

ior. We therefore subdivided FA trials into trials in which licking preceded whisker-touch onset –

likely reflecting impulsive licking behavior – and those trials in which licking onset occurred after

whisker-touch onset (67.1% and 32.9% of FA trials, respectively; Figure 5F). LDCCS1:S2 showed an

increased level prior to whisker-touch onset specifically for the subset of trials with early licking

(Figure 5G,p<0.05, one-way ANOVA with repeated measures). This suggests that population activ-

ity in S1 and S2 can be coordinated during licking behavior both in the presence and absence of sen-

sory stimulation.

We next asked whether LDCCS1:S2 is also related to other motor behaviors such as whisking. Dur-

ing texture discrimination, animals adopted a high-amplitude, rhythmic whisking strategy prior to

whisker-touch onset in anticipation of the delivered texture, which drives texture-specific kinematics

and is absent in non-task sessions (Chen et al., 2013b; 2015). During task conditions, we measured

Figure 5. Motor behavior is associated with coordinated population activity across S1 and S2. (A) Analysis of coordinated activity across S1 and S2. Left

panel shows example of single-trial population responses for Hit trials projected along Hit vs. CR axis for simultaneously imaged S1 (LDS1) and S2 (LDS2)

of S2 sub-areas. Upper right panels shows trial-by-trial correlations (LDCCS1:S2) between LDS1 andLDS2 atindicated time points. Bottom right panel

shows calculated LDCCS1:S2 across the trial period. (B) LDCC S1:S2 for Hit vs. CR trials. (C) Normalized histogram of reaction times across Hit trials. (D)

LDCC S1:S2 for Hit trials along Hit vs. CR axis aligned to licking onset. (E) LDCC S1:S2 for FA vs. CR trials. (F) Licking rate for FA trials in which licking

onset precedes (pre-wo) and follows (post-wo) whisker-touch onset. (G) LDCC S1:S2 for pre-wo vs. post-wo FA trials. (H) High vs. low whisking amplitude

CR trials. (I) LDCC S1:S2 for high vs. low whisking amplitude CR trials. All time course data are aligned to whisker-touch onset (black dotted line, x-axis)

except for [D] which is aligned to licking onset (red dotted line). shaded area: s.e.m.; (C,D,E,G,I) n = 63 pairs of S1 and S2 planes in 7 animals; (C) n =

7120 trials (F) n = 1120 trials (H) n = 7 animals, 6960 trials.

DOI: 10.7554/eLife.14679.015

The following figure supplements are available for figure 5:

Figure supplement 1. Linear discriminant analysis across different sensory or behavior axes.

DOI: 10.7554/eLife.14679.016

Figure supplement 2. Coordinated actitvity across S1 and S2 is not stimulus-specific.

DOI: 10.7554/eLife.14679.017
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LDCCS1:S2 from population responses for CR trials (i.e. same texture, no licking) projected along the

high- vs. low-amplitude whisking axis (Figure 5H and Figure 5—figure supplement 1C–D). Similar

to the results for licking behavior, high-amplitude whisking trials were associated with higher

LDCCS1:S2 prior to and after whisker-touch onset when compared to low-amplitude whisking trials

(Figure 5I,p<0.02, one-way ANOVA with repeated measures), demonstrating another motor-related

component of S1-S2 coordination. By using LDA for other pairs of trial conditions, we found that

stimulation with distinct textures did not result in elevated LDCCS1:S2, suggesting that S1-S2 coordi-

nation is not stimulus-specific (Figure 5—figure supplement 1G–H and Figure 5—figure supple-

ment 2). Taken together, this demonstrates that the coordination of population activity across S1

and S2 can be associated with licking and whisking behavior that is independent of sensory stimulus.

Projection neurons contribute to coordinated activity
Correlated changes in population dynamics across cortical areas can either reflect direct cortico-cor-

tical interactions, indirect interactions through cortico-thalamocortical pathways, or co-activation

from another common input source (Salinas and Sejnowski, 2001). In order for direct cortico-corti-

cal interactions to be present, such correlations should exist in neurons that project between those

areas. To understand how S1S2 and S2S1 neurons might contribute to the coordination of population

activity in S1 and S2, we repeated the LDA for S1 or S2 but shuffled the trial-by-trial responses of

S1S2 and S2S1 neurons when projecting the population response onto the LD axis (Figure 6—figure

supplement 1A). In order to ensure that changes in the population response were specific to these

neurons and not merely a result of altering any given subpopulation of neurons, we also computed

population responses, in which trials from an equal number of S1ND and S2ND neurons were shuffled

(see details in Materials and methods). We observed no significance difference in the trajectory or

discrimination power of S1 and S2 population responses when shuffling any of these cell types (Fig-

ure 6—figure supplement 2), suggesting that the average population response within each area

was not altered with this analysis.

To determine the specific contribution of S1S2 and S2S1 to inter-areal coordination, we measured

the change in correlation between the S1 and S2 population responses (4LDCCS1:S2; relative to

unshuffled controls) that resulted from shuffling trials of these projection neurons and compared it

to the result of shuffling trials of S1ND and S2ND neurons (Figure 6A and Figure 6—figure supple-

ment 1B). If S2S1 and S1S2 neurons especially contribute to LDCCS1:S2, their trial-shuffling should

lead to a larger reduction (more negative 4LDCCS1:S2) compared to trial-shuffling S1ND and S2ND

neurons. Analysis of coordinated activity projected along the Hit vs. CR axis showed no significant

difference in 4LDCCS1:S2 between S2S1 and S1S2 neurons and S2ND and S1ND neurons when aligned

to whisker-touch onset (Figure 6—figure supplement 3). However, analysis of Hit trials after align-

ing to licking onset revealed a negative dip in 4LDCCS1:S2 when shuffling projection neurons, indi-

cating that S1S2 and S2S1 neurons especially contributed to LDCCS1:S2 upon licking onset (Figure 6B,

p<0.0001, one-way ANOVA with repeated measures).

We further assessed the contribution of S2S1 and S1S2 neurons to inter-areal coordination along

motor conditions by analyzing whisking- and licking-related LDCCS1:S2. We first measured 4LDCCS1:

S2 from population responses projected onto the high- vs. low-whisking amplitude axis (for CR trials)

and found that S1S2 and S2S1 neurons significantly contributed to LDCCS1:S2 in high-amplitude whisk-

ing trials following but not preceding whisker-touch onset (Figure 6C, p<0.02, one-way ANOVA

with repeated measures). Similarly, analysis of FA vs. CR trials showed that S2S1 and S1S2 neurons

did not specially contribute to LDCCS1:S2 for FA trials in which licking onset preceded whisker-touch

onset (Figure 6D), but they did so for trials in which licking onset followed whisker-touch onset

(Figure 6E, p<0.02, one-way ANOVA with repeated measures). These findings indicate that while

licking and whisking behavior is associated with correlations in population responses across S1 and

S2, any special contribution of S1S2 and S2S1 neurons to this coordination depends on the presence

of sensory stimulus, thus occurring after the whisker-touch onset. Hence, the specific contribution of

projection neurons mutually connecting S1 and S2 could reflect sensory- rather than motor-related

activity. In line with this notion, further analysis showed that 4LDCCS1:S2 decreased when trial-shuf-

fling S1S2 and S2S1 neurons compared to S1ND and S2ND neurons following whisker-touch onset on

CR trials, when licking behavior is absent (Figure 6F, p<0.02, one-way ANOVA with repeated meas-

ures). These results demonstrate that direct cortico-cortical interactions through S1S2 and S2S1 neu-

rons reflect exchange of sensory or decision information rather than motor information.
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Discussion
In summary, we have demonstrated simultaneous measurement of calcium signals in identified feed-

forward and feedback neurons across S1 and S2 in the awake behaving mouse using a multi-area

two-photon microscope in combination with viral-mediated labeling of long-range projection neu-

rons. We have used this approach to investigate the contribution of cortico-cortical projection neu-

rons to the coordinated activity patterns across these areas. While the acquisition rate of the

imaging system and the kinetics of the expressed calcium indicator (Chen et al., 2013b) used in this

study precludes our ability to capture the 4–10 ms spike latencies reported across mouse cortical

areas (Ferezou et al., 2007) for examining spike-timing and monosynaptic relationship of long-range

cortical dynamics, we nevertheless observe that population activity across S1 and S2 is coordinated

during relevant task periods in a behavior-dependent manner. We took a simplified view of the pop-

ulation activity by performing dimensionality reduction with LDA, which is a supervised method to

Figure 6. Projection neurons contribute to coordinated S1 and S2 activity. (A) The contribution of specific cell

types to coordinated activity across S1 and S2 is measured by trial-shuffling responses for those cell types prior to

calculating the LDCCS1:S2. The resulting LDCCS1:S2 from the shuffled condition is then subtracted by the LDCCS1:S2

from the control condition to obtain DLDCCS1:S2 (see also Figure 6—figure supplement 1). (B), DLDCCS1:S2 for Hit

trials along the Hit vs. CR axis after aligning to licking onset. (C) DLDCCS1:S2 for high-amplitude whisking CR trials

along the high vs. low whisking amplitude CR trial axis. (D) DLDCCS1:S2 for FA trials, in which licking onset

precedes whisker-touch onset along the FA vs. CR axis. (E) DLDCCS1:S2 for FA trials, in which licking onset follows

whisker-touch onset along the FA vs. CR axis. (F) DLDCCS1:S2 for CR trials along the FA vs. CR axis. All time course

data are aligned to whisker-touch onset (dotted line, x-axis) except for [B] which is aligned to licking onset (red

dotted line). (shaded area: s.e.m.; n = 21 S1 planes, 21 S2 planes, 63 pairs of S1 and S2 planes in 7 animals).

DOI: 10.7554/eLife.14679.018

The following figure supplements are available for figure 6:

Figure supplement 1. Measuring the contribution of specific cell types to coordinated population activity.

DOI: 10.7554/eLife.14679.019

Figure supplement 2. Projection of shuffled trials does not alter average population response.

DOI: 10.7554/eLife.14679.020

Figure supplement 3. Contribution of S1S2 and S2S1 neurons to Hit and CR trials relative to whisker-touch onset.

DOI: 10.7554/eLife.14679.021
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project high-dimensional dynamics onto a single axis. Specifically, through the analysis of correlated

population responses across S1 and S2 along multiple LDA axes, we find that inter-areal coordina-

tion is associated with both goal-directed licking as well as whisking behavior and that it can occur

independent of sensory stimuli. In the absence of tactile stimuli, S1S2 and S2S1 neurons do not show

a special contribution to motor-related coordination, suggesting that this coordination does not nec-

essarily reflect direct cortico-cortical interactions. S1 and S2 receive common input from M1 and

POm, conveying efferent and re-afferent motor information (Deschenes et al., 1998; Suter and

Shepherd, 2015), and are additionally coupled by thalamic relays through POm (Theyel et al.,

2010) (Figure 7). We speculate that motor-related S1 and S2 coordination could be a result of com-

mon drive or cortico-thalamocortical pathways through these shared areas. In contrast, we find a

special contribution of identified S1S2 and S2S1 neurons to inter-areal coordination occurring during

whisker-texture touch, indicating that their participation particularly depends on sensory stimuli. This

contribution is most prominent when sensory stimuli and motor behavior are paired, such as upon

licking onset on Hit trials, which further suggests that such cortico-cortical interactions could be

involved in a form of ’active sensation’. However, we reason that this interaction does not necessarily

reflect motor behavior. Given that these neurons also specially contribute to inter-areal coordination

during whisker-touch periods in CR trials, we propose that these direct cortico-cortical interactions

more likely represent the exchange of sensory- or decision-related activity.

Our findings provide the first direct evidence for a unique contribution of direct cortico-cortical

interactions over other sources of correlated activity across these areas. Such specificity points

Figure 7. Model of coordinated activity across S1 and S2. Our results identify coordinated activity patterns across

S1 and S2 that are related to motor behaviors, which could arise from common input from M1 or POm or indirect

cortico-thalamocortical (CTC) pathways through POm. S1S2 and S2S1 neurons especially participate in inter-areal

coordination when motor behavior is paired with sensory stimuli suggesting that such cortico-cortical (CC)

interactions specifically reflect the exchange of sensory information during active sensation.

DOI: 10.7554/eLife.14679.022
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towards distinct but potentially synergistic roles for how different inputs may be involved in informa-

tion flow across the cortex. The division between direct and indirect interactions along sensory and

motor parameters, respectively, is in line with theories that indirect cortico-thalamocortical pathways

are more involved in relaying motor, rather than sensory, signals (Sherman and Guillery, 2011).

Additionally, both frontal cortical areas such as M1 and higher-order thalamic nuclei such as POm

have been implicated in gating and coordinating activity across somatosensory areas (Pais-

Vieira et al., 2013; Theyel et al., 2010; Zagha et al., 2013). In the visual system, the pulvinar, a

higher-order thalamic nuclei involved in attention, has been identified in coordinating activity

between visual areas (Saalmann et al., 2012). Our findings support the notion that nuclei that also

drive motor-related or attention-related activity might help to coordinate primary and higher sensory

areas in a manner that facilitates sensory-related direct cortico-cortical communication upon stimulus

presentation.

What is the relevance of this sensory-related cortico-cortical interaction? It has been suggested

that feedback inputs from higher sensory areas provide contextual information to help extract rele-

vant sensory features provided by feedforward inputs in primary areas (Gilbert and Li, 2013). We

find that S2S1 neurons exhibit prominent licking and decision-related activity, which is in line with

recent evidence that behavior-related activity in S1 can be inherited from S2 (Yang et al., 2016).

Coordinated activity between S1S2 and S2S1 neurons during texture discrimination may reflect sen-

sory processing involved in several functions. One function may be associated with decision making,

as exemplified by correlations increasing upon whisker touch onset and peaking upon licking onset

on Hit trials. Another function may be associated with the reinforcement of particular aspects of the

sensory signal that might strengthen or stabilize sensory representations through goal-directed

learning, exemplified by the persistent coordinated activity after licking onset on Hit trials

(Chen et al., 2015). Future work to dissect S1S2 and S2S1 neuronal dynamics using projection-tar-

geted multi-area calcium imaging will help to resolve these possibilities.

In conclusion, multi-area calcium imaging with anatomical tracers presents new opportunities for

overlaying functional measurements with recent comprehensive mapping of the long-range connec-

tivity in mouse neocortex (Oh et al., 2014; Zingg et al., 2014). Several different approaches have

been implemented for imaging across brain areas. While the use of multiple miniature objectives

does not limit the maximum distance between areas that can be imaged (Lecoq et al., 2014), the

physical size and working distance of such objectives does limit the proximity between areas and

depth that can be imaged noninvasively. The use of multiple beams through a single large-FOV,

long-working distance objective thus provides a complementary approach. The multi-area two-pho-

ton miscroscope described here shares similar design principles as reported in Stirman et al.

(2014). The core principles and modularity of these designs readily allows for improvements in tem-

poral resolution through resonant, free-line, or random-access scanning systems (Bathellier et al.,

2012; Grewe et al., 2010), increasing the number of simultaneously imaged areas and cortical layers

with low repetition rate lasers (Cheng et al., 2011; Quirin et al., 2014), and imaging across larger

FOVs with different optical configurations (Stirman et al., 2014; Tsai et al., 2015).

In addition to developments in imaging technology, new genetic tools are being developed for

combinatorial conditional gene expression to concurrently label increasing number of pathways

(Fenno et al., 2014) and genetically encoded voltage indicators for reporting electrical signals

(Akemann et al., 2013; Sun et al., 2013). These developments will expand the range of biological

questions that can be addressed in elucidating the relationship between long-range cortical commu-

nication and the fine-scale organization and computations occurring within local circuitry.

Materials and methods

Multi-area two-photon microscope
The microscope consists of several building blocks: The beam preparation stage, which sends two

pulse trains with the correct delay and intensity to the focal plane units (FPUs), which in turn allow

independent focusing and positioning of each sub-area. The scan system scans the beams directed

to each sub-area in parallel and sends them to the objective via the excitation optics. The micro-

scope front end consists of the objective, z-stage and detection system. FPUs, excitation optics and
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the microscope front end were mounted on an elevated breadboard. The optical design software

Zemax (Zemax LLC, Redmond, USA) was used for system layout and performance evaluation.

Beam preparation
Laser light from a Ti:sapphire laser (Mai Tai HP DeepSee, Spectra-Physics) was split into two beams

using a 50:50 femtosecond beam splitter (10RQ00UB.4, Newport). In each beam path, a Pockels cell

(Model 350-80-LA-02, Conoptics, Danbury, CT) was used to adjust the laser intensity. A 4x beam

expander composed of a �25 mm and 100 mm achromat (ACN127-25B and AC254-100B-ML, Thor-

labs) was matched to the beam size to the FPU entrance aperture. An adjustable delay line was

implemented for one beam path to allow tuning of the relative phase of both excitation beams.

Focal plane units
The two focal plane units were built in mirrored design from opto-mechanical parts on 200x450 mm

breadboards (MB2060/M, Thorlabs) mounted on linear translation stages (Standa 8MTF-102LS05,

Vilnius, LT) with kinematic seats (KBS98B, Thorlabs) to allow for quick exchange of FPU configura-

tions. For focusing each FPU contained an electrically tunable lens (Optotune EL-10-30-C, selected

for low wavefront aberrations, focal length tuning range: 80 to 230 mm, Optotune AG, Zurich, CH),

positioned in a plane conjugate to the scanners and coupled to the first scan lens via a relay lens

(Thorlabs AC254-125-B-ML) and a small fold mirror (Thorlabs MRA10-E03). For tuning the beam

from convergent to divergent (equivalent to decreasing or increasing the working distance of the

objective, respectively), each ETL was combined with a negative offset lens (f = �120 mm, Qioptiq).

In each FPU a relay lens (Thorlabs AC254-125-B-ML) and a small fold mirror (Thorlabs MRA10-E03)

was used to direct the beam into the scan system.

Scan system
The output beams from the two FPUs were coupled into the scan system which consisted of two

identical scan lenses (S4LFT0089/98, Sill Optics, Wendelstein, D) via the cantilever arms. XY-move-

ment of the FPUs and ETL-focusing enabled independent positioning and focusing of the two imag-

ing sub-areas for the two beams. 6-mm galvanometric scan mirrors were used in the scan unit

(6215H, Cambridge Technology, Bedford, MA).

Excitation optics
A 200 mm tube lens (AC508-200B, Thorlabs) coupled the excitation beams into the microscope

objective (16X CFI75 LWD (NA 0.80), Nikon, Egg, CH). With 6-mm scan mirrors, the effective excita-

tion NA was 0.53, which under-filled the microscope objective.

Microscope front end
The objective and the detector system were mounted on a custom-made Z-translation stage with

high load capacity (Feinmess LT235-50-DC-R-B, Dresden, Germany). A crossed-roller ring bearing

(THK RU178UUCC0G, Tokyo, Japan) allowed the rotation of the Z-stage, objective and detection

system to accommodate for different tilts of the cover slip of the chronic window preparation.

Detection optics and electronics
The detection system of the microscope was optimized for high detection efficiency over large FOVs

by making use of the large acceptance angles of the hybrid photo detectors (HPDs, R11322U-40

MOD, Hamamatsu). To de-magnify the 20 mm-pupil of the microscope objective onto the 5 mm-

active area of the HPDs, we used a 4.7x telescope composed of a 90 mm-Achromat (G322389000,

Qioptiq) and a wide-angle eyepiece (Panoptic 19 mm, TeleVue). A dichroic mirror (515DCXR,

Chroma Technologies) located between the achromat and eyepiece split the emission light into two

channels in which blue (480/60 nm, Semrock) and yellow (542/50 nm, Semrock) emission filters and

IR rejection filters (FF01-720/SP-25, Semrock) were located. The HPD signal was preamplified

(C1077B, Hamamatsu) and digitized by an analog-to-digital converter (ADC, NI-5771, National

Instruments) connected to a field-programmable array (FPGA, NI-7962R, National Instruments). For

synchronizing the data acquisition to the laser pulse train (Cheng et al., 2011), the signal of the

internal reference photo diode of the laser was sent to an adjustable electronic delay line (DB64,
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Stanford Research Systems) and amplified (BBA100VG, Alphalas) before being fed into the trigger

line of the ADC. The FPGA counted the pulses arriving from the two excitation beams and sorted

the resulting HPD emission signal accordingly in order to separate the images acquired from two

sub-areas at a rate of 160 MHz.

Microscope software
For microscope control, a custom-written software ‘SCOPE’ was programmed in C++ (Visual Studio

C++) and used to control live scanning, data acquisition, laser intensity, FPU and ETL movement,

and the synchronization to other experimental equipment. For combinatorial plane hopping during

behavior experiments, custom behavior software programmed in LabVIEW was used to trigger

multi-area imaging through SCOPE and control laser intensity and ETL focus shift. Documentation is

available at http://rkscope.sourceforge.net/.

Generation of viral construct
For construction of the AAV-EF1a-fio-H2BLSSmKate2 viral construct, the double-inverse oriented

FRT (fio) sites was synthesized de novo (GenScript) with flanking BamH1 and EcoRI restriction sites

and an internal AscI and NheI sites and insert into an AAV-EF1a-YC-Nano140 (Chen et al., 2013b)

backbone plasmid. The H2B subunit with 5’ NheI and 3’ AgeI restriction sites was generated by PCR

amplification from a pTagRFP-H2B vector (Evrogen) and subcloned into an pLSSmKate2-N1

plasmid (Piatkevich et al., 2010). Subsequently, H2BLSSmKate2 with 5’ NheI and 3’ AscI restriction

sites was generated by PCR amplification followed by insertion into the AAV-EF1a-fio plasmid. The

AAV-syn-Flpe viral construct was generated by restriction enzyme digest of pCAG-

Flpe (Matsuda and Cepko, 2007) and insertion into the pAAV-6P-SEWB backbone plasmid. For the

AAV-EF1a-dio-NLStdTomato viral construct, NLStdTomato with 5’ NheI and 3’ AgeI restriction sites

was generated by PCR amplification from a pTagRFP-H2B vector followed by insertion into the

AAV-EF1a-dio-eYFP plasmid. The AAV-pgk-Cre construct was previously described3. Recombinant

serotype 6 AAV particles were produced by co-transfecting AAV-293 cells with the shuttle plasmid

and the pDP6 packaging plasmid. Recombinant serotype 1 AAV particles were produced by co-

transfecting AAV-293 cells with the shuttle plasmid and the pDF1 packaging plasmid. Cell lysates

were subjected to purification on iodixanol density gradients followed by HPLC with HiTrap Heparin

column for AAV2 or by anion exchange HPLC for AAV1 (GE Healthcare Bio-Sciences AB) using stan-

dard procedures. The viral suspension obtained was concentrated using Centricon centrifugal filter

devices with a molecular weight cut-off of 100 kDa (Millipore, Billerica, MA), and the suspension

medium replaced with PBS. Vector titres were determined by measuring the number of encapsi-

dated genomes per ml by real-time PCR.

Viral injections and cranial window implantation
Experimental procedures followed the guidelines of the Veterinary Office of Switzerland and were

approved by the Cantonal Veterinary Office in Zurich. Stereotaxic viral and tracer injections were

performed on young adult (P35-42) male wild type C57Bl6/J mice as previously described

(Chen et al., 2013b). A solution containing AAV1-EF1a-YC-Nano140, AAV1-EF1a-fio-

H2BLSSmKate2, and AAV6- pgk-Cre (200 nl total volume, ~1 x 109 vg/ml per virus, 2:1:1 ratio by vol-

ume) was delivered into S1, targeting L2/3 and L5 (~300 and 500 mm below the pial surface). A solu-

tion containing AAV1- EF1a-YC-Nano140, AAV1-EF1a-dio-NLStdTomato, and AAV6-syn-Flpe (200

nl total volume, ~1 x 109 vg/ml per virus, 2:1:1 ratio by volume) was delivered into S2, targeting L2/3

and L5 (~300 mm and 500 mm below the pial surface). Injection regions were selected by optical

intrinsic signal imaging or stereotaxic coordinates (1.1 mm posterior to bregma, 3.3 mm lateral for

S1; 0.7 mm posterior to bregma, 4.2 mm lateral for S2). To allow long-term in vivo calcium imaging,

a cranial window was implanted 24 hr after virus injections over S1 as described33. A metal post for

head fixation was implanted on the skull, contralateral to the cranial window, using dental acrylic.

For demonstration of large single-FOV imaging, structural images were acquired from one adult

male Rasgrf2-2A-dCre;Camk2atTA;Ai92(TITL-YCX2.60) transgenic mouse (Madisen et al., 2015)

implanted with a cranial window without viral injections.
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Animal behavior
Mice were housed 2–3 per cage in reverse 12 hr light cycle conditions. All handling and behaviour

occurred under simulated night time conditions. One week following chronic window implantation,

mice were handled daily for 1 week while acclimated to a minimum of 15 min of head fixation. Mice

were water restricted and trained to a go/no-go texture discrimination task previously described

(Chen et al., 2013b). Imaging during behaviour began following 3–5 training sessions once animals

reached a performance level of d’ > 1.75 (80% correct) for one session. Imaging under task condi-

tions was performed over the course of 5–6 sessions at a performance level of d’ = 2.62 ± 0.15.

Once sufficient task-related data was acquired, mice were provided with free access to water and

then imaged for an additional 5–6 sessions under non-task conditions, in which textures were pre-

sented but no reward or punishment delivered. Sample sizes were chosen based on previous behav-

ioural imaging studies, which comprise 6–10 mice per group (Chen et al., 2013b; 2015). Due to

their low occurrence (6.7 ± 0.5% of all trials), miss trials were excluded from analysis. No statistical

methods were used to predetermine sample size. Since animals constitute a single experimental

group, no randomization of animals or blinding to experimenter was performed.

Intrinsic signal optical imaging
The S1 and S2 barrel column was identified using intrinsic signal optical imaging under ~1.5% isoflur-

ane anaesthesia. The cortical surface was illuminated with 630-nm LED light, single whiskers were

stimulated (2–4˚ rostro-caudal deflections at 10 Hz), and reflectance images were collected through

a 4x objective with a CCD camera (Toshiba TELI CS3960DCL; 12-bit; 3-pixel binning, 427x347

binned pixels, 8.6-mm pixel size, 10-Hz frame rate). Intrinsic signal changes were computed as frac-

tional changes in reflectance relative to the pre-stimulus average (50 frames; expressed as DR/RIOS).

Barrel column centres for stimulated whiskers were located by averaging intrinsic signals (15 trials),

median-filtering (5-pixel radius), and thresholding to find signal minima. Reference surface vascula-

ture images were obtained using 546-nm LED illumination and matched to images acquired during

2-photon imaging. Prior to behavior training, all whiskers excluding the principal and first-order sur-

round whiskers corresponding to the expression area were partially trimmed to a length out of reach

from texture contact during the task. During whisker trimming, the principal whisker was noted by

images taken from the high-speed video camera for re-identification in subsequent imaging sessions

for whisker tracking.

Whisker tracking
The whisker field was illuminated with 940-nm infrared LED light and movies were acquired at

500 Hz (500 x 500 pixels) using a high-speed CMOS camera (A504k; Basler). Average whisker angle

across all imaged whiskers was measured using automated whisker tracking software

(Knutsen et al., 2005). Because our limited temporal resolution of imaging (7 Hz) precluded analysis

of rapid dynamics within individual whisking cycles, we based our analysis on the envelope amplitude

of whisking calculated as the difference in maximum and minimum whisker angle along a sliding win-

dow equal to the imaging frame duration (142 ms). The slower dynamics of the envelope amplitude

represents both rhythmic and non-rhythmic forms of whisking behavior. For comparison between

high- vs. low-amplitude whisking trials, the mean whisking amplitude during the 1-s period prior to

whisker-touch onset was calculated for each animal and high- and low-amplitude trials were identi-

fied as those whose amplitude during the same period was greater or less than the mean, respec-

tively. For all trials, the first and last possible time point for whisker to texture contact was quantified

manually through visual inspection.

Identification of feedforward and feedback neurons
For in vivo identification of LSSmKate-positive feedforward and tdTomato-positive feedback neu-

rons, 3D-volume image stacks were taken on a standard custom-built 2-photon microscope con-

trolled by HelioScan34, equipped with a Ti:sapphire laser system (~100-fs laser pulses; Mai Tai HP;

Newport Spectra Physics), a water-immersion objective (40�LUMPlanFl/IR, 0.8 NA; Olympus), galva-

nometric scan mirrors (model 6210; Cambridge Technology), and a Pockels Cell (Conoptics) for laser

intensity modulation. An 800-nm excitation with 610/75 nm emission filter and 840–900 nm excita-

tion with 697/75 nm emission filter was used for tdTomato and LSSmKate2, respectively.
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Due to suboptimal in vivo 2-photon excitation of LSSmKate2, additional H2BLSSmKate2-positive

neurons were identified followed by antibody staining of LSSmKate2 for signal amplification. Mice

were anesthetized (ketamine/xylazine; 100/20 mg/kg body weight) and perfused transcardially with

4% paraformaldehyde in phosphate buffer, pH 7.4. Cortical sections (50 mm) were cut along the

imaging plane using a vibratome (VT100; Leica), then blocked in 10% NGS and 1% Triton at room

temperature and incubated overnight at 4˚C in 5% NGS, 0.1% Triton and mKate guinea pig poly-

clonal antibody (Cai et al., 2013); 1:1,000). A guinea pig Alexa647–conjugated goat IgG secondary

antibodies (1:400; Molecular Probes, Invitrogen) was applied for 2 hr at room temperature. Images

were acquired with a confocal microscope (Fluoview 1000; Olympus), green (YC-Nano140), red

(tdTomato), and infrared (Alexa647) excitation/emission filters.

Calcium imaging analysis
Two-channel, two-area (CFP/YFP) calcium imaging data was imported into MATLAB (Mathworks) for

processing. For each channel, spatial linear unmixing was applied for the two area as described

below. Background was subtracted on each area and channel (bottom 1st percentile fluorescence

signal across entire frame). For each area, Hidden Markov Model line-by-line motion correction was

applied to both data channels. Regions of interests (ROIs) corresponding to individual neurons were

manually selected from the mean image of a single-trial time series using ImageJ (National Institute

of Health). Mean pixel value for each ROI was extracted for both channels. Calcium signals were

expressed as relative YFP/CFP ratio change DR/R=(R-R0)/R0. R0 was calculated for each trial as the

bottom 8th percentile of the ratio for the trial. Active neurons were identified by two-way ANOVA

with repeated measures of the neuronal calcium signal against the neuropil signal (significance value,

p<0.05) for each imaging session. The neuropil is defined as a region of interested selected from the

entire imaging frame representing non-somatic tissue expressing YC-Nano140 but excluding blood

vessels.

Denoising with tensor decomposition
Calcium signals were denoised using tensor decomposition before further analysis (Figure 2—

figure supplement 1 and Figure 2—source data 1) (Cong et al., 2015; Seely et al., 2014).

Tensor decomposition is a method used for dimensionality reduction, which can be viewed as a

generalization of singular value decomposition of data represented as tensors rather than matri-

ces (Hitchcock, 1927). While calcium imaging recordings are often described as two-dimensional

matrices comprised of neurons and time dimensions, it can additionally be described along a

third dimension representing trial conditions (Figure 2—figure supplement 1A). For such data,

tensor decomposition can be used as a form of single-trial denoising by assuming that calcium

signals across neurons, time, and trial conditions are not independent and that multi-linear rela-

tionships across dimensions therefore can be exploited. Through tensor decomposition, back-

ground noise that does not match the assumed multi-linear structure can be reduced if present.

Single-trial denoising of calcium transients is desirable when analyzing conditions with low trial

counts such as FA trials (7.4% of all trials) in order to improve statistical analysis of such

conditions.

For each animal, calcium signals were arranged into a data tensor (Y) across three dimensions

according to the number of trial conditions (I; i.e., 6 combinations of decision and texture), number

of neurons (J), number of time points (K). Using Tucker decomposition, this tensor can be described

elementwise as:

yijk ¼
X

C

c¼1

X

N

n¼1

X

T

t¼1

gcntmicmjnmkt for i¼ 1:::I; j¼ 1:::J; k¼ 1:::K (1)

consisting of a factor matrix related to trial-condition containing elements (mic) with column size C, a

factor matrix related to neuron containing elements (mjn) with column size N, a factor matrix related

to time point (mkt) with column size T, and a core tensor describing the interactions between the

matrix components containing elements (gcnt). From this, a low rank tensor, Y’, containing the

denoised traces can be described elementwise as:
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y0ijk ¼
X

C0

c¼1

X

N0

n¼1

X

T 0

t¼1

gcntmicmjnmkt for i¼ 1:::I; j¼ 1:::J; k¼ 1:::K (2)

This tensor is obtained by reducing the column size of each factor matrices across each dimension

resulting in C’ which is related to the number of trial conditions such that (C’ � I), N’ which is related

to the number of neurons such that (N’ � J), and T’ which is related to the number of time points

such that (T’ � K). From this, a tensor rank (Q0) for Y’can be expressed as the sum of the reduced col-

umn sizes across all dimensions:

Q0 ¼ C0 þN 0 þT
0 (3)

In order to determine the optimum Q0, a five fold cross validation procedure was first performed

(Figure 2—figure supplement 1B) (Seely et al., 2014). For each trial condition in each neuron, trials

were divided into a training set (80% of trials) and a test set (20% of trials). Single-trial traces in each

tensor element were replaced with average traces from the training set. Denoised traces were

obtained for a given Q0 and compared to the average traces of the test set by computing the mean

squared errors (MSE) (Figure 2—figure supplement 1C,D). The optimum Q0 is identified as Q
0

with

the minimum MSE. Determining Q0 by five fold cross validation is advantageous in that it is unsuper-

vised and can correct for unknown sources of noise. However, since the error estimation used in this

procedure is based on comparing average traces, the Q
0

determined is not necessarily optimized for

denoising single-trial responses and thus neurons with variable trial-to-trial responses may not be

properly denoised. Indeed, while five fold cross validation was sufficient in identifying optimum Q0

for T’ and C’, better fits for some neurons were observed when manually adjusting N’ (data not

shown).

In order to improve denoising of single-trial responses, a second-step procedure was imple-

mented to optimize N’ through a supervised approach of performing tensor decomposition on noisy

simulated calcium transients in order to determine a rank offset (N’offset) resulting in a final tensor

rank Q
0

final

� �

such that:

Q
0

final ¼ C
0

þN
0

þN
0

offset þT
0 (4)

where the denoised transient best reflects the ideal transients.

In order to emulate the multi-linear structure across neurons, time, and trial conditions present in

our experimental data that is required for tensor decomposition, a peeling algorithm (Grewe et al.,

2010) using previously measured YC-Nano140 parameters (Chen et al., 2013a) (single-action poten-

tial transient: A0 = 4.54%, tonset = 0.186 s, Apeak = 2.3%, tdecay = 0.673 s) was applied to raw traces

to extract estimated spike trains for all neurons and trials for a single animal. While the accuracy and

precision of the estimated spikes may vary depending on noise in the raw trace (Lütcke et al.,

2013), the multi-linear relationships across each tensor dimension is preserved. The estimated spike

trains are then convolved using YC-Nano140 parameters to produce ideal simulated calcium transi-

ents. The degree of noise under experimental conditions is estimated by assuming that any variance

in calcium signal present in inactive neurons reflects non-neuronal noise. For each inactive neuron, a

normal distribution was fit to raw calcium traces to obtain s representing the degree of noise for

that neuron. Noise was then added neuron-by-neuron to simulated calcium transients that matched

the s’s from all inactive neurons in the data set.

The similarity between the ideal and denoised simulated trace was measured by computing the

Pearson’s correlation coefficient (CC) between the two traces for each neuron and taking the aver-

age across neurons. From this, the optimum Q
0

final was determined by calculating a cost function

representing the difference between Q
0

final and the CC obtained from Q
0

final , each normalized across

the range of tested Q
0

final :

Cost Q
0

final

� �

¼ Q
0

final











 � CC Q
0

final

� �









 (5)
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such that the optimum Q
0

final resulted in the minimum Cost(Q
0

final ) (Figure 2—figure supplement

1E).

In comparing denoising of simulated transients with tensor decomposition against temporal

smoothing by a 5-point Gaussian filter, we observed that denoising with tensor decomposition bet-

ter preserves the onset and peak of calcium transients, resulting in better CC of denoised to ideal

traces (Tensor decomposition 0.69 ± 0.01, Gaussian filter: 0.65 ± 0.01, p<1x10-6, Student’s t-test,

Figure 2—figure supplement 1F,G). This suggests that denoising with tensor decomposition is pre-

ferred when investigating sub-second temporal dynamics of activity as it preserves high frequency

components of the calcium signal.

The optimum Q
0

final for each animal was determined for denoising (Figure 2—figure supplement

1H). We asked if the size of the optimum low rank tensor used for denoising was similar across ani-

mals (Figure 2—source data 1). We observed that C’ was largely consistent across animals and

reflected a rank near the total possible ranks along the condition dimension. For T’ and N
0
þ N

0

offset,

we observed that the optimum column size across these dimensions was strongly correlated with the

number of identified active neurons (T’: R = 0.82, p<0.05; N
0
þ N

0

offset: R = 0.82, p<0.05, Pearson’s

correlation, Figure 2—figure supplement 1I). This suggests that the optimum low rank tensor iden-

tified for denoising captures a relevant portion of the original data tensor containing real calcium

transient events.

Spatial linear unmixing
Spatial linear unmixing is based on the fact that the total PMT signal recorded at the corresponding

pixel for both areas in a given channel is the linear sum of the signal for each area weighted by the

cross talk resulting from the fluorescence lifetime of the indicator. For a dual beam system, the con-

tribution of the two detected areas can be represented by the following equations:

J1 x;yð Þ ¼ S1;1� I1 x;yð Þþ S1;2 � I2 x;yð Þ

J2 x;yð Þ ¼ S2;1� I1 x;yð Þþ S2;2 � I2 x;yð Þ
(6)

where J is the total signal per area, I is the fluorophore abundance, and S is the crosstalk. These

equations can be expressed as a matrix:

J½ � ¼ S½ � I½ � (7)

whereby the unmixed image [I] can be calculated using the inverse matrix of [S]

I½ � ¼ S½ ��1
J½ � (8)

assuming the detected signal in both areas represents the total signal:

S1;1þ S2;1 ¼ 1

S1;2þ S2;2 ¼ 1
(9)

[S] [S] was determined empirically at the beginning of each session using the experimentally pre-

pared mouse expressing YC-Nano140. The intended FOVs were sequentially scanned with a single

excitation beam during dual area acquisition mode. The resulting crosstalk into each area was calcu-

lated from the acquired reference images and applied for spatial linear unmixing of subsequent dual

beam data using MATLAB.

Behavior classification
Behavior-related activity was described using a general linear model (GLM) (Miri et al., 2011;

Pinto and Dan, 2015) expressed as:

Yt ¼
X

6

i¼�3

BL
i X

L
t�iþ

X

6

i¼�3

BW
i X

W
t�iþ

X

6

i¼�3

BT
i XT

t�i (10)

Z-scored regressors (Xt+i) representing touch onset (T), whisking envelope amplitude (W), and

licking onset (L) with regression coefficients (Bi) at different delays (i) were used to model the z-
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scored calcium signal (Yt) across time frames t. Regressors for touch onset and whisking amplitude

were obtained from the whisker-tracking video while regressors for licking onset were obtained from

the lick-sensor data. Each regressor was down sampled to match the calcium imaging frame rate.

Touch onset was selected to best reflect touch-related responses given previously reported neuronal

adaptation in neuronal firing upon repeated touches (Musall et al., 2014; Yamashita et al., 2013).

Whisking envelope amplitude was previously observed to best reflect periods of whisking and non-

whisking behavior in order to identify whisking-related neurons (Chen et al., 2013b). Given the slow

kinetics of calcium indicators and given that the imaging rate is well below the Nyquist rate of the

natural whisking frequency (~10 Hz) (Kleinfeld and Deschenes, 2011), whisking-related signals mea-

sured here do not reflect whisking frequency. Licking onset was selected due to the observation that

licking behavior in task-performing mice typically proceeds in licking bouts. Introducing additional

behavioral regressors such as licking offset and touch offset to the GLM did not improve model fit

(data not shown). In order to capture a physiologically realistic range of response delays to behav-

ioral events as previously observed (Chen et al., 2013b; 2015), regressors for each behavioral

parameter were generated across a range of delays from i = �3 (t = 0.43 s before behavior event)

to i = +6 (t = 0.85 s after behavioral event). Only delays from i = �2 to i = +5 were included for cell

type analysis. GLM was applied to active neurons, where the first 5 s from each trial across active

sessions were extracted and concatenated for analysis.

To fit the GLM, trials were randomly divided into a training set (80% of trials) and a test set (20%

of trials). Ridge regression was used to minimize the Bi at irrelevant delays. The optimum regulariza-

tion parameter was determined by performing a five fold cross validation within the training set and

selecting the value with the best cross validation performance. Bi was then calculated from the train-

ing set and applied to the test set to obtain predictions for Yt. To assess GLM fit, a coefficient of

determination (R2) was calculated by comparing the predicted and the original traces. To reduce the

effect of the particular choice of test trials on R2, test trials were bootstrapped 1000 times to obtain

a final R2 reflecting GLM fit. To assess the significance of individual Bi, a shuffled distribution for

each Bi was obtained by permutation test after shuffling calcium traces for time points within each

trial 1000 times. Bi whose value was greater than the 95 percentile of the shuffled distribution was

identified as significant. GLM does not require normal distribution of the data set. Comparisons of

Bi across cell types was performed using one-way repeated measures ANOVA. The variances of

each cell type were tested using the F-test and determined to not be significantly different.

Trial type analysis
The performance of neuronal populations or single neurons in discriminating two trial types was

assessed using a receiver operating characteristic (ROC) analysis (Green and Swets, 1966;

O’Connor et al., 2010). For neuronal populations, the discriminability of the population response

projected along the LD axis was measured at each time point 1 s prior to and following touch. Each

trial was assigned a ‘discrimination variable’ score (DV) equal to the similarity to the mean projected

population response for trial type X minus the similarity to the mean projected population response

for trial type Y. Thus, for trial type X

DVx ¼ Xi
�X8j 6¼i � �Y

� �

(11)

and for trial type Y

DVY ¼ Yi �X� �Y8j 6¼i

� �

(12)

where Xi and Yi are the single-trial population response for the i-th trial. �X and �Y are the mean popu-

lation response. Trials were classified as belonging to trial type X or Y if DVX or DVY was greater

than a given criterion, respectively. To determine the fraction of trials an ideal observer could cor-

rectly classify, an ROC curve was constructed by varying this criterion value across the entire range

of DVX or DVY. At each criterion value, the probability that a trial of type X exceeded the criterion

value was plotted against the probability that a trial of type Y exceeded the criterion value. The area

under the ROC curve (Aobserved) was then calculated to represent the single-neuron performance

(‘fraction correct’) as the fraction of trials correctly discriminated by an ideal observer using the DV.

We corrected for sampling bias due to the limited number of trials collected, using methods

described (Safaai et al., 2013). The sampling bias (Abias) was determined by calculating the mean
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area under the ROC curve after randomly shuffling trial type or stimulus labels repeated 1000 times.

The corrected area under the ROC curve Acorrected was then calculated as Acorrected = Aobserved �

Abias + 0.5.

For single neurons, classification of trial type X versus trial type Y was based on the similarity of

the calcium transient in each trial to the mean calcium transient for trial type X compared to trial

type Y. Only the first second of the calcium signals following initial texture contact was considered

since it reflected the minimum touch duration common across trial types (Chen et al., 2013b;

2015). DV was equal to the dot-product similarity to the mean calcium transient for trial type X

minus the dot-product similarity to the mean for trial type Y. Neurons discriminating above chance

were identified using repeated permutations tests where trial type or stimulus labels were randomly

shuffled. For each permutation test, a threshold corresponding to the shuffled distribution 95th per-

centile was calculated. Neurons, whose performance values were above the mean value of this

threshold across 1000 permutation tests, were considered to be discriminating above chance. Com-

parison of discriminative neurons across cell types was performed using a �
2 test. Normal distribu-

tion was assumed for statistical comparison but not explicitly tested.

Linear discriminant analysis
We used linear discriminant analysis (LDA) for dimensionality reduction of neuronal population

responses. Observations consisted of the 4R/R values at a given time point for all neurons simulta-

neously recorded within an imaging field, thus representing the neuronal state space vector at this

moment (with each neuron representing one dimension), i.e., representing a ‘snapshot’ of the state

space vector trajectory during the given trial. Observations were considered for all n trials, separated

into the N1 and N2 trials for the two chosen trial conditions C1 and C2, respectively (e.g., Hit vs. CR

or low- vs. high-amplitude whisking; see Table 1). 4R/R values were arranged in a matrix x with neu-

rons as columns and trials as rows. The LDA procedure seeks to find a projection vector w such that

the projections of the observations onto this axis, collected in the vector

y¼wTxþ w0; (13)

are best separated for the two chosen trial conditions. Maximal separation is defined as the maximal

difference of the mean vectors �1 ¼
1

N1

P

n2C1
xn and �2 ¼

1

N2

P

n2C2
xn for C1 and C2, respectively, nor-

malized by the within-class scatter. The solution, known as Fisher’s linear discriminant (Fisher, 1936;

Safaai et al., 2013), is given by

wT ¼ S�1

w �1��2ð Þ (14)

where S�1

W is the within-class covariance given by

S�1

W ¼
X

n2C1

xn ��1ð Þ xn ��1ð ÞTþ
X

n2C2

xn ��2ð Þ xn��ð ÞT (15)

The bias is calculated as

w0 ¼�
1

2
wT

�1�wT
�2

� �

(16)

Intuitively, this procedure finds the hyperplane in the state space (orthonormal to the projection

vector w and encompassing w0) that results in best separation according to Fisher’s criterion.

To analyze the time courses of neuronal population dynamics during behavior trials, the LDA pro-

cedure was applied independently to each time point over 1-s periods before and after whisker-

touch onset (or licking onset in some cases). Only neurons identified as active in at least one imaging

session were included in the LDA. For each individual trial we thereby obtained a time-dependent

‘linear discriminant’ variable LD(t). The mean value �LD by definition is half of the distance between

the projections of the mean vectors m1and m2

�LD tð Þ ¼
1

2
wT

�1þwT
�2

� �

(17)

For whole-region analysis (S1 or S2) we averaged LD values obtained from all imaging areas/

planes.
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Inter-areal coordination as a function of time, termed LDCCS1:S2, was determined by calculating

the Pearson’s correlation coefficient between the population responses LDS1 and LDS2 for S1 and S2,

respectively, across all simultaneously imaged trials at each time point. To determine the specific

contribution of S1S2 or S2S1 neurons to cross-areal coordination, a one-dimensional modified dis-

criminant LD’(t) was obtained for each area by shuffling the trial-by-trial calcium responses of S1S2 or

S2S1 neurons, respectively, and then projecting the population vector onto the LDA axis determined

from the non-shuffled population response. Cross-correlation of LD’S1 and LD’S2 yielded LDCC’S1:S2.

Shuffling was repeated 1000 times to obtain mean and standard error for LDCC’S1:S2 values. The

change in S1-S2 correlation (DLDCCS1:S2) was calculated as the mean LDCC’S1:S2 minus the

unshuffled LDCCS1:S2. Reductions in correlation strength thus show up as negative values. To control

for trial shuffling of S1S2 or S2S1 neurons, trial shuffling was performed on an equal number of S1ND

or S2ND neurons, repeated 1000 times, and DLDCCS1:S2 was calculated from the average cross-

correlation.

Comparisons of LDCCS1:S2 and DLDCCS1:S2 across trial conditions were performed using one-way

repeated measures ANOVA. The variances of each the trial condition were tested using the F-test

and determined to not be significantly different.
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genetically encoded voltage indicator. Scientific Reports 3. doi: 10.1038/srep02231

Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin
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